Order ideals and a generalized Krull height theorem

نویسندگان

  • David Eisenbud
  • Bernd Ulrich
چکیده

Let N be a finitely generated module over a Noetherian local ring (R,m). We give criteria for the height of the order ideal N∗(x) of an element x ∈ N to be bounded by the rank of N . The Generalized Principal Ideal Theorem of Bruns, Eisenbud and Evans says that this inequality always holds if x ∈ mN . We show that the inequality even holds if the hypothesis becomes true after first extending scalars to some local domain and then factoring out torsion. We give other conditions in terms of residual intersections and integral closures of modules. We derive information about order ideals that leads to bounds on the heights of trace ideals of modules—even in circumstances where we do not have the expected bounds for the heights of the order ideals!

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 7 M ay 2 00 2 ORDER IDEALS AND A GENERALIZED KRULL HEIGHT THEOREM

Let N be a finitely generated module over a Noetherian local ring (R,m). We give criteria for the height of the order ideal N∗(x) of an element x ∈ N to be bounded by the rank of N . The Generalized Principal Ideal Theorem of Bruns, Eisenbud and Evans says that this inequality always holds if x ∈ mN . We show that the inequality even holds if the hypothesis becomes true after first extending sc...

متن کامل

A Simple Proof of Some Generalized Principal Ideal Theorems

Using symmetric algebras we simplify (and slightly strengthen) the Bruns-Eisenbud-Evans “generalized principal ideal theorem” on the height of order ideals of nonminimal generators in a module. We also obtain a simple proof and an extension of a result by Kwieciński, which estimates the height of certain Fitting ideals of modules having an equidimensional symmetric algebra.

متن کامل

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

On Krull’s Intersection Theorem of Fuzzy Ideals

We deal with Krull’s intersection theorem on the ideals of a commutative Noetherian ring in the fuzzy setting. We first characterise products of finitely generated fuzzy ideals in terms of fuzzy points. Then, we study the question of uniqueness and existence of primary decompositions of fuzzy ideals. Finally, we use such decompositions and a form of Nakayama’s lemma to prove the Krull intersect...

متن کامل

The Remak-Krull-Schmidt Theorem on\ Fuzzy Groups

In this paper we study a representation of a fuzzy subgroup $mu$ of a group $G$, as a product of indecomposable fuzzy subgroups called the components of $mu$.  This representation is unique up to the number of components and their isomorphic copies. In the crisp group theory, this is a well-known Theorem attributed to Remak, Krull, and Schmidt. We consider the lattice of fuzzy subgroups and som...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004